Batch Normalization

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 7 - 82 April 20, 2021



Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

\/ Var[z(*)] this is a vanilla
differentiable function...
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Batch Normalization [loffe and Szegedy, 2015]
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Batch Normalization [loffe and Szegedy, 2015]
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D Problem: What if zero-mean, unit
variance is too hard of a constraint?
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Batch Normalization [loffe and Szegedy, 2015]
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Estimates depend on minibatch;

Batch Normalization: Test-Time _ i o tocttime:
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Batch Normalization: Test-Time
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Can be fused with the previous Yi i = 7@- o 5 Output,
fully-connected or conv layer “J J0d 7 ShapeisNxD

Fei-Fei Li & Ranjay Krishna & Danfei Xu Lecture 7 - April 20, 2021



Batch Normalization [loffe and Szegedy, 2015]
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FC Usually inserted after Fully

BLN ___ Connected or Convolutional layers,
1 and before nonlinearity.

tanh
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Batch Normalization [loffe and Szegedy, 2015]

|

FLC - Makes deep networks much easier to train!
BN - Improves gradient flow
I - Allows higher learning rates, faster convergence
tanh - Networks become more robust to initialization
l - Acts as regularization during training
FC - Zero overhead at test-time: can be fused with conv!
l - Behaves differently during training and testing: this
BlN is a very common source of bugs!
tanh
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Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
X: N x D xX: NxCxHxW
Normalize | Normalize | 4
M,0: 1 x D MH,0: 1xCx1lxl
Y,B: 1 x D Y,BP: 1xCx1xl
y = Y(x-M)/0o+p y = Y(x-M)/0o+p
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Layer Normalization

Batch Normalization for
fully-connected networks

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

Xx: N x D x: N x D
Normalize * Normalize *
M,0: 1 x D M,0: N x 1
Y,B: 1 x D Y,B: 1 x D

y = Y(x-M) /o+p y = Y(x-M) /o+p

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016
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Instance Normalization

convolutional networks convolutional networks
Same behavior at train / test!
X: NxXCxHxW X: NxXCxHxW
Normalize * * * Normalize * *
H,0: 1xCx1xl H,0: NxCx1x1l
Y,P: 1IxCx1lx1l Y,B: 1xCx1lx1l

y = Y(x-M) /o+p y = Y(x-M) /o+p

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
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Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm
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Wu and He, “Group Normalization”, ECCV 2018

Fei-Fei Li & Ranjay Krishna & Danfei Xu Lecture 7 - April 20, 2021



Group Normalization

Batch Norm Layer Norm Instance Norm Group Norm
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Wu and He, “Group Normalization”, ECCV 2018
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