Cyan's Blog

Search

Search IconIcon to open search

Part.31_Principal_Component_Analysis(ML_Andrew.Ng.)

Last updated Nov 11, 2021 Edit Source

# Principal Component Analysis - 主成分分析

2021-11-11

Tags: #MachineLearning #DimensionalityReduction #PCA

# 基本步骤

# Step 0 - Data Preprocessing

PCA依赖于欧氏距离, 所以预处理数据可以让降维效果更好.

# Step 1 - Compute the Covariance Matrix

$$\Sigma=\frac{1}{m} \sum_{i=1}^{n}\left(x^{(i)}\right)\left(x^{(i)}\right)^{T}$$

# Step 2 - Compute Eigenvectors of Matrix $\Sigma$

# Step 3 - Mapping the Data