Cyan's Blog

Search

Search IconIcon to open search

正态分布_高斯分布_Normal_Distribution-Gaussian_Distribution

Last updated Sep 16, 2021 Edit Source

# 正态分布

2021-09-16

Tags: #Math/Statistics

# 概率密度函数

正态分布, 概率密度函数: $$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\Large -\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$$ or $$f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)$$

# 重要性质

# 记忆公式

# 与拉普拉斯分布的联系

拉普拉斯分布与高斯分布的联系_Relation_of_Laplace_distribution _and_Gaussian_distribution

# Higher Dimensions

$$\begin{aligned} &p{x}=\frac{1}{(\sqrt{2 \pi})^{n / 2}|C|^{1 / 2}} \exp \left[-\frac{1}{2}(x-\mu)^{T} C^{-1}(x-\mu)\right] \\ &x=\left[\begin{array}{c} x_{1} \\ \cdots \\ x_{n} \end{array}\right] \quad \mu=\left[\begin{array}{c} \mu_{1} \\ \cdots \\ \mu_{n} \end{array}\right] \quad C=\left[\begin{array}{ccc} \sigma_{11}^{2} & \ldots & \sigma_{1 n}^{2} \\ \cdots & & \ldots \\ \sigma_{m 1}^{2} & \ldots & \sigma_{m n}^{2} \end{array}\right] \end{aligned}$$


  1. Sum of normally distributed random variables - Wikipedia ↩︎