Cyan's Blog

Search

Search IconIcon to open search

矩阵的不同乘法-Hadamard-Kronecker

Last updated Feb 1, 2022 Edit Source

# 矩阵的不同乘积

2022-02-01

Tags: #Matrix #Math

# 一般的矩阵乘法

Matrix_multiplication_qtl1

# Hadamard Product $\odot$

对应位置的元素相乘 $$ \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix} \circ \begin{bmatrix} b_{11} & b_{12} & b_{13}\\ b_{21} & b_{22} & b_{23}\\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11}, b_{11} & a_{12}, b_{12} & a_{13}, b_{13}\\ a_{21}, b_{21} & a_{22}, b_{22} & a_{23}, b_{23}\\ a_{31}, b_{31} & a_{32}, b_{32} & a_{33}, b_{33} \end{bmatrix}$$

# Kronecker Product $\bigotimes$

Tensor Product vs Kronecker Product

Tensors for Beginners 13: Tensor Product vs Kronecker Product - YouTube