Regularization-正则化
# Regularization
2022-02-14
Tags: #Regularization #DeepLearning
# Definition
Regularization: any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.1
- 对学习算法的修改——旨在减少泛化误差而不是训练误差
- 这是一个很宽泛的概念,
Many strategies used in machine learning are explicitly designed to reduce the test error, possibly at the expense of increased training error. These strategies are known collectively as regularization.1
正则化只在训练中使用. 也就是说, 在模型实际用来推理得结果的时候不使用正则化.
- 对于 L2 正则化, 这个没啥影响, 但是对于 Dropout 来说, 意味着 $\mathbf{h}=\operatorname{dropout}(\mathbf{h})$
# Links
- Part.18_Regularization_Intuition(ML_Andrew.Ng.)
- D2L-22-权重衰减
- Part.19_Regularized_Linear_Regression(ML_Andrew.Ng.)
- Part.20_Regularized_Logistic_Regression(ML_Andrew.Ng.)
I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.(zotero://select/items/@Goodfellow-et-al-2016) ↩︎